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Abstract
Alterations have occurred and continue to manifest in the Earth’s biota as a result of climate

change. Animals exhibiting temperature dependent sex determination (TSD), including sea

turtles, are perhaps most vulnerable to a warming of the Earth as highly skewed sex ratios

can result, potentially leading to population extinction resulting from decreased male recruit-

ment. Recent studies have begun to quantify climate change impacts to sea turtle popula-

tions, especially in terms of predicting effects on hatchling sex ratios. However, given the

inherent difficulty in studying sex ratios at this life stage, a more accurate assessment

of changes in population sex ratios might be derived by evaluating the juvenile portion of

foraging aggregations. We investigated the long-term trend in sex ratio of a juvenile logger-

head (Caretta caretta) sea turtle population inhabiting Pamlico and Core Sounds, North

Carolina, USA. We used plasma testosterone reference ranges measured using radioim-

munoassay (RIA) to assign sex for 959 turtles and confirmed sex assignment of a subset

(N = 58) of the sampled turtles through laparoscopic examination of their gonads. Our

results demonstrate that for this particular population of loggerheads, sex ratios (3Fema-

les:1Male) had not significantly changed over a 10 year period (1998–2007), nor showed

any significant difference among 5-cm straight carapace length (SCL) size classes. Ulti-

mately, these findings provide a basis for comparison with future sex ratios, and highlight

the importance of establishing similar long-term studies monitoring secondary, rather than

primary, sex ratios, so that needed mitigation measures to climate change impacts can be

implemented.
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Introduction
Since the mid-nineteenth century, a notable increase (0.6–0.8°C) in the Earth’s mean surface
temperature has been documented and is continuing at an accelerated rate [1–6]. As a result of
this warming trend, changes have occurred and continue to manifest in the Earth’s biota
including phenology (timing of seasonal activities) and physiology of organisms, range and dis-
tribution of species, composition of and interactions within and among communities, and
structure and dynamics of ecosystems (see [4, 6] for a review). Animal and plant phenology
and geographic distribution are processes most commonly monitored to assess population
response to climate change. In a review of the studied phenologies of 1,598 species, it was esti-
mated that more than half (59%) had demonstrated noticeable changes during the past 20 to
140 years [7]; earlier breeding (or first singing) of birds, flowering of plants, and spawning of
amphibians are among the most common changes observed for plants and animals [7]. How-
ever, in some cases, more extreme changes can occur with these temperature increases, such as
invasions of warm-water species and the eradication of other species, which can have a greater
impact on populations [4]. For example, in the tropics, increases in water temperature of less
than 1°C can result in large-scale coral bleaching and ensuing mortality of all coral species [4].

Likewise, for those animals more susceptible to alterations in the thermal environment, a
change in climate might have more adverse effects on a population [4]. In the case of ecto-
therms, whose survival and reproduction are strongly dependent upon thermal conditions, cli-
mate change could have serious consequences. For many reptile species, the temperature at
which the eggs are incubated determines the sex of the hatchlings, a process known as tempera-
ture-dependent sex determination (TSD) [reviewed in [8]]. During a 5-yr study monitoring air
temperature and sex ratios of hatchling painted turtles (Chrysemys picta), empirical evidence of
the sensitivity of a species with TSD to even slight changes in temperature was provided [9].
The direct relationship between annual hatchling sex ratios and mean July air temperature was
documented, which in some years produced 100% male or female hatchlings. Similar to
painted turtles, sea turtle female offspring are produced at higher temperatures with male
offspring produced at lower temperatures [10]. Thus, if the predicted rise in global tempera-
tures results in a disproportionate number of female hatchlings and similarly skewed adult sex
ratios, single-sex populations could be produced, eventually leading to demographic collapse
[9, 11, 12].

While many researchers have recognized the potential negative effect climate change could
have on sea turtle populations [13], only recently have studies begun to quantify these impacts,
especially in terms of predicting skewed hatchling sex ratios [14–18]. Consequently, long-term
monitoring of nesting sites was recommended so that potential future changes to primary
(hatchling) sex ratios could be measured [19, 20] and necessary mitigation measures imple-
mented in a timely manner. However, primary sex ratios are influenced by a variety of factors,
including geographic location of nests, time of year eggs are laid, substrate in which eggs are
laid, metabolic heating, and annual weather patterns [21–26], and this variation can occur
within the same beach over several years [21, 27]. Moreover, primary sex ratios are generally
estimated from the sex of a limited number of dead or live hatchlings salvaged from a few
nests, or inferred from measured incubation temperatures or durations [26], which requires
obtaining pivotal temperatures in a laboratory setting, as well as sacrificing a sufficient number
of hatchlings for validation [20]. While non-lethal methods to sex post-hatchling turtles have
been developed, they are expensive and logistically difficult [28].

Alternatively, assessing the sex ratios of neritic juveniles (secondary sex ratio) might offer a
better way of tracking trends in a population’s sex ratio [21, 29, 30]. Since the juvenile life stage
in sea turtles is protracted, it represents many cohorts and, consequently, many years of
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hatchling production, incorporating sex ratio variability over time [30, 31]. Moreover, random
sampling of populations is possible, as neritic juveniles are less likely to have sex-specific
behavioral biases displayed by adults [21, 30]. Finally, methods used to sex juveniles are direct
and non-lethal—gonads of stranded dead turtles are examined during necropsy or testosterone
levels in the blood of live turtles are measured. When combined with laparoscopic verification
of RIA results, blood testosterone can be an accurate means of determining sex of large num-
bers of juveniles [32]. Despite logistical difficulties in accessing neritic juveniles, estimated sex
ratios at this stage might reveal a more accurate representation of a sea turtle population’s
future reproductive potential and response to changes in the environment [21, 32].

As part of an ongoing assessment of sea turtle populations along the US Atlantic coast [33],
we investigated the long-term sex ratio of neritic juvenile loggerhead (Caretta caretta) sea tur-
tles inhabiting Pamlico and Core Sounds, North Carolina, USA. We measured circulating tes-
tosterone levels with radioimmunoassay (RIA) and verified sex of a subset of the sampled
turtles through visual examination of their gonads to establish a range of testosterone concen-
trations associated with each sex. We then compared estimated sex ratios over a 10-year period
(1998–2007) and among 5-cm straight carapace length (SCL) size classes to determine if signif-
icant changes in sex ratios were occurring, potentially due to changes in the climate.

Materials and Methods
This research was conducted under the authority of U.S. Endangered Species Act Section 10(a)
(1)(A) scientific research permits from the U.S. Fish and Wildlife Service (#TE-676379) and
the National Marine Fisheries Service (#1260) which reviewed and approved all handling pro-
tocols for the animals in this study, including blood sampling.

Study area and capture technique
We sampled loggerhead turtles captured in commercial fishing gear (pound nets and long haul
seines) in Core and Pamlico Sounds, North Carolina, USA (Fig 1) from 1998–2002 [34] and
from 2003–2007 (this study). Pound nets are a stationary gear that passively capture targeted
fish by directing them into an enclosure (pound) by means of the lead [35]. Long-haul seines
are 1 km x 2 m nets pulled between two boats for up to 8 km before the catch is encircled and
concentrated by pulling the net around a stake [36]. When sea turtles are also incidentally cap-
tured, they are accessible for sampling purposes. We analyzed turtles sampled only during the
summer months (June–August) to increase the likelihood of sampling the resident population
and to avoid any seasonal bias in testosterone concentration [34]. Using a sterile syringe with a
3.81 cm, 20 gauge needle, we collected 5 ml of blood from the dorsocervical sinus of the turtle
[37]. Blood samples were immediately transferred to a sterile lithium heparin or sodium hepa-
rin tube and stored on ice for a maximum of 5 h (i.e., for the rest of the field day). We applied
Inconel metal alloy size 681 self-piercing tags (National Brand and Tag Company, Newport,
Kentucky, USA) to both rear flippers and injected Passive Integrated Transponder (PIT) tags
(Destron-Fearing Corp., South St. Paul, Minnesota, USA, 125 kHz) in the triceps superficialis
muscle of the left front flipper to recognize recaptures. We measured standard straight-line car-
apace length (SCL) from the nuchal notch to the posterior tip to the nearest 0.1 cm using cali-
pers, and excluded turtles with a carapace length greater than 76 cm [30] from the analysis to
prevent use of adults in this study (and avoid bias associated with various sex-specific behaviors
of the adult population) [30, 31]. We recorded surface water temperature to the nearest 0.5°C
using calibrated thermometers. If we encountered previously sampled turtles (from prior
years), we included them, as they also were members of that year’s resident population. After
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returning from the field, we centrifuged blood samples for 6–10 min, then pipetted 2 ml sam-
ples of plasma into cryogenic vials, and stored them in an ultra-cold (–80°C) freezer.

Sexing Technique
We utilized a plasma androgen sexing technique to classify sex of the turtles using a testoster-
one RIA procedure that was previously validated for loggerhead sea turtle plasma [30, 38, 39].
We confirmed sex for a sub-sample of turtles (N = 58) via laparoscopic examination August
2000 and July 2001 [34] and June 2004 to validate sex classification based on the RIA procedure
[32]. We characterized sex by examining the shape and surface of the gonads: ovaries have an
irregular shape with an undulating edge and granular surface; testes are elongated in shape
with a smooth edge and surface [40]. After verifying sex, we subsequently used testosterone lev-
els of known sex turtles to estimate plasma testosterone ranges for each sex.

Statistical Analysis
We combined previous data (testosterone levels and laparoscopy results) collected 1998–2002
[34] with data collected 2003–2007. To determine if there was a significant difference in sex

Fig 1. Map of study area where juvenile loggerhead (Caretta caretta) sea turtles were captured in pound nets and long haul seines
fished in Core and Pamlico Sounds, North Carolina, USA, June to August, 1998–2007.

doi:10.1371/journal.pone.0160911.g001
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ratio (% females) among years and 5-cm size classes (SCL) ranging from 40.0–75.9 cm, we
used a contingency table analysis [41]. In addition, we computed binomial confidence intervals
on the proportion of females for each year and size class.

Results
We sampled blood from 959 loggerhead turtles with SCL ranging from 42.8–75.9 cm and con-
ducted laparoscopies on 58 of them. Of the 946 whose sex was determined, 710 were female
and 236 were male (Table 1). Eight turtles did not have carapace measurements, so were not
included in the % females across size class analysis (Table 2). Water temperature at which tur-
tles were sampled was 20°C or greater. Plasma testosterone concentrations for all turtles ranged
from 0.1–11,420 pg/ml (N = 959). The sex ratio of laparoscoped turtles was 2.9F:1.0M. Plasma
testosterone concentrations for laparoscoped females ranged from 6.7–432.0 pg/m (N = 43)
while males ranged from 372.0–1884.0 pg/ml (N = 15). There was some overlap in testosterone

Table 1. Number of females, males, percentage females (95% confidence intervals) and χ2 values for juvenile loggerhead (Caretta caretta) sea
turtles.

Year Female Male Total % Female χ2

1998 67 28 95 71 (0.60, 0.79) 1.01404

1999 63 22 85 74 (0.63, 0.83) 0.03529

2000 98 31 129 76 (0.68, 0.83) 0.06460

2001 87 30 117 74 (0.65, 0.82) 0.02564

2002 112 22 134 84 (0.76, 0.89) 5.26368

2003 108 34 142 76 (0.68, 0.83) 0.08451

2004 61 24 85 72 (0.61, 0.81) 0.47451

2005 49 17 66 74 (0.62, 0.84) 0.02020

2006 50 22 72 69 (0.57, 0.80) 1.18519

2007 15 6 21 71 (0.48, 0.89) 0.14286

Total 710 236 946 8.31051

Turtles were captured from 1998–2007 in Core and Pamlico Sounds, North Carolina, United States of America. Totals do not include unknowns (N = 13).

Data from 1998–2002 are from McNeill et al. 2007.

doi:10.1371/journal.pone.0160911.t001

Table 2. Number of females, males, percentage females (95% confidence intervals) and χ2 values across size classes (straight carapace length)
for juvenile loggerheads (Caretta caretta).

Size Class (cm) Female Male Total % Female χ2

40.0–44.9 3 1 4 75 (0.19, 0.99) 0

45.0–49.9 16 7 23 70 (0.47, 0.87) 0.362319

50.0–54.9 59 11 70 84 (0.74, 0.92) 3.219048

55.0–59.9 149 48 197 76 (0.69, 0.82) 0.042301

60.0–64.9 214 66 280 76 (0.71, 0.81) 0.304762

65.0–69.9 161 67 229 71 (0.67, 0.83) 2.339181

70.0–74.9 94 30 124 76 (0.67, 0.83) 0.043011

75.0–75.9* 9 3 12 75 (0.43, 0.95) 0

Total 705 233 918 6.310622

Turtles captured in Core and Pamlico Sounds, North Carolina, United States of America. Totals do not include turtles that were not measured (N = 8) or

unknown sex (N = 13). Data from 1998–2002 are from McNeill et al. 2007.

* size class excludes turtles >76 cm to avoid adult behavioral biases.

doi:10.1371/journal.pone.0160911.t002
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concentration of males with females: one male (372.0 pg/ml) had a lower testosterone concen-
tration than two of the females (394.1 and 432.3 pg/ml). Therefore, we determined that turtles
having testosterone values of 371 pg/ml or less would be categorized female, turtles having tes-
tosterone values of 433 pg/ml or greater would be categorized male, and turtles having testos-
terone values 372–432 pg/ml would be categorized unknown (Fig 2).

Fig 2. Frequency of plasma testosterone concentration of juvenile loggerhead (Caretta caretta) sea turtles
captured in Core and Pamlico Sounds, North Carolina, USA, June to August, 1998–2007. A. that were
laparoscopically examined (N = 58) (water temperatures 25–29°C) and B. that were not laparoscopically examined
(N = 901) (water temperatures 20–32°C). Vertical lines indicate maximum testosterone titer of 371 pg/ml for females
and minimum testosterone titer of 433 pg/ml for males. Sex could not be determined for turtles with values between
vertical lines.).

doi:10.1371/journal.pone.0160911.g002
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We used these testosterone ranges to assign sex to turtles not laparoscoped (N = 901),
resulting in 668 females, 220 males and 13 unknowns with a sex ratio of 3.0F:1.0M (Fig 2B).
We did not find a significant change in sex ratios (% females) among years (χ2 = 8.3, df = 9,
P>0.5; Table 1, Fig 3) or size classes (χ2 = 6.3, df = 7, P> 0.5; Table 2).

Discussion
Despite concerns about potential changes in sex ratios of animals displaying TSD because of
predicted warming conditions, during this study we found that the sex ratio of juvenile logger-
head sea turtles inhabiting North Carolina inshore waters did not change significantly from
1998–2007, nor was there a significant change in sex ratios among the different 5-cm SCL size
classes (Table 2). Studies of juvenile loggerheads captured offshore south of Madeira Island
(2000–2006) [42] or in the Mediterranean (2000–2011) [43] likewise did not find a significant
difference among annual population sex ratios. However, a decreasing proportion of females in
Madeira waters for turtles larger than the 45.0 cm SCL size class was noted [42]. Because this is
the size at which turtles start leaving the pelagic habitat for neritic waters, the authors postu-
lated that females are making the shift to neritic feeding grounds before males [42]. Although
these long-term sex ratio studies do not reveal any trends over time, these data establish a base-
line sex ratio for their respective areas against which results of future sex ratio analyses might
be compared.

There are a number of reasons why our study’s population sex ratio may not have exhibited
any noticeable trend during this time period. Given the variation in annual hatchling sex ratios
[27], along with sea turtles’ long-lived, late-maturing life history, a 10 year period likely is not
long enough to reveal any changes occurring in a populations’ sex ratio. Another factor to con-
sider is that loggerheads exhibit delayed maturation, with estimates of up to 45 years [44]; thus,
the data yielded by neritic juveniles are representative of what environmental conditions were
like approximately 10–20 years ago [45]. Furthermore, despite overall increases in global

Fig 3. Estimated annual percentage male and female juvenile loggerhead (Caretta caretta) sea turtles
captured in Core and Pamlico Sounds, North Carolina, USA, June to August, 1998–2007.)

doi:10.1371/journal.pone.0160911.g003
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temperatures [5], long-term mean air temperatures of coastal North Carolina from 1940–2005
actually have decreased [46]. Because of the significant relationship demonstrated between air
and sea surface temperature [46], this indicates that hatchlings on these beaches may not have
been exposed to warming temperatures during this time period.

In addition to representing environmental conditions from several decades ago, our popula-
tion of juvenile loggerheads comprises multiple genetic nesting populations that in turn reflect
different incubation environments. For instance, a study of the genetic composition of a forag-
ing population in North Carolina, revealed that 80% of the turtles originated from the south
Florida nesting population, 12% were from the northeast Florida to North Carolina nesting
population, 6% from Yucatan, Mexico, and 2% from other rookeries [47]. While warmer
beaches of the south Florida nesting population might be contributing a high percentage of
female hatchlings to the population, the more northern and cooler nesting beaches from the
northeast Florida to North Carolina nesting populations might mitigate that highly skewed
female ratio by producing proportionally more male hatchlings [22]. For example, a study of
the hatchling sex ratio for a North Carolina nesting beach determined a mean annual sex ratio
of 58% female [46]. However, an investigation of a juvenile population of loggerheads in forag-
ing habitat in North Carolina resulted in a more female-biased (75%) sex ratio [34]. Thus, one
needs to consider the effects of climate change on the different nesting populations that con-
tribute to the juvenile population when evaluating its sex ratio.

Conversely, a lack of a trend in our sex ratio data may indicate that loggerheads are adapting
to warming temperatures. In fact, some have proposed that TSD might actually be an unex-
pected adaptation that could enable animals to survive warming effects of climate change [48].
For instance, nesting in different substrates, latitudes, or depths, or nesting during cooler time
periods (at the beginning or end of the nesting season) could enable turtles to mitigate the
harmful effects of increasing temperatures [46]. As an example, a ten day earlier median nest-
ing date for a population of loggerheads nesting along Florida’s Atlantic coast from 1989 to
2003 was recorded [49]. Likewise, a male-biased population of red-eared sliders (Trachemys
scripta elegans) was postulated to be the result of warming temperatures [50]. During the con-
sequential longer nesting season, red-eared slider females laid an extra clutch when soil tem-
peratures were relatively low, leading to the production of additional males [50]. Thus, changes
in maternal behavior such as these could ameliorate some of the harmful environmental effects
of climate change.

Animals with TSD can be viewed as the ‘canaries in the coal mine’ with respect to climate
change [11], and these populations should be monitored to determine what effect, if any, cli-
mate change is having on sex ratios [13, 42, 51, 52], and ultimately, population viability. Many
studies quantifying the effects of climate change on sea turtle population sex ratios have
focused attention on monitoring hatchling sex ratios. However, considering the inherent intra-
and inter-annual variation in hatchling sex ratios, the uncertainty associated with hatchling sex
ratio estimation (i.e., estimates from small numbers of hatchlings or inferred from measured
incubation temperatures or durations) [26], or the expense and logistical difficulty in sexing
post-hatchling turtles [28], a more viable alternative would be to monitor changes in the sex
ratio of the juvenile portion of the population [21, 29, 30]. Because this life stage integrates sex
ratio variability over time [30, 31], allows for more random sampling of populations [21, 30],
and can be sexed measuring blood testosterone levels that are verified via laparoscopy, moni-
toring effects of climate change at this life stage might more accurately reveal if mitigation mea-
sures to climate change are warranted [21, 32].

Despite this relevant management concern, long-term studies examining trends in second-
ary sex ratios for sea turtle populations are limited, with only two such studies having been
conducted on juvenile loggerheads: in the Mediterranean Sea (necropsy of 271 turtles) [43] and
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in the northeast Atlantic (laparoscopy of 224 turtles with partial histological validation) [42].
Most other studies only look at a population’s sex ratio at a particular point in time. In contrast,
our study is one of the first to examine sex ratios over a broad time span, encompassing ten
years and sampling over 950 juvenile loggerhead turtles

Primary sex ratios for most loggerhead sea turtle populations, derived from nest tempera-
tures or incubation durations [26], have been found to be strongly female-biased (see [53] for a
review), with some populations in the western North Atlantic consisting of 90% or more
females [53, 54]. Although still biased towards females, sex ratios of foraging juvenile logger-
head populations are not as highly skewed, displaying a 2F:1M ratio in Florida and Virginia
[38], 3F:1M in North Carolina [34], 2F:1M in the northeast Atlantic [42], and 1.56F:1M in the
Mediterranean [43]. However, operational sex ratios (estimated from adults actively breeding
in a season) potentially appear to be more balanced [53] because male sea turtles breed more
frequently than females and mate with multiple females, thus, providing a more balanced oper-
ational sex ratio despite a population’s highly skewed primary sex ratio.

Even with the existing female bias and its possible role in sea turtle life history, because sea
turtles produce females during warm incubation temperatures [55], current predicted warming
conditions have the potential to result in even more highly skewed sex ratios towards females,
which in turn could lead to reduced genetic viability [56] and extinction [9, 57]. In a study of
the potential impacts of climate change on loggerhead nesting populations, modeling exercises
[46] showed that even the minimum predicted increase in air temperature (2°C) in nesting
areas which are currently highly female-biased (such as southern Florida) would result in total
feminization of many nests while a 3°C increase would result in many of these nests experienc-
ing lethal incubation temperatures. However, given other environmental factors that can influ-
ence incubation temperatures (e.g., rainfall), even under an increasing temperature scenario,
there will likely still be times when beach temperatures are male-producing [26].

Although sea turtles have survived past geologic temperature fluctuations, the methods used
to cope with past changes and the speed with which those changes occurred is not known [58].
Current predicted climate changes are projected to happen at relatively rapid rates [5], and lit-
tle empirical knowledge about the ability of sea turtles to survive these changes is available. If
warming global temperatures result in detrimental changes to population sex ratios, animals
with TSD could react in a number of ways–with an evolutionary response by modifying pivotal
temperatures or changing to genotypic sex determination, an ecological response by altering
geographic ranges or timing of nesting, or by becoming extinct [8]. Sea turtle populations are
currently imperiled due to a number of anthropogenic threats including habitat alteration and
loss, pollution, and incidental capture in fisheries [59]. If sea turtles are not able to adjust to
impending climate changes, the result could be detrimental. Therefore, long-term monitoring
of sea turtle populations should continue; however, studies should focus more on investigation
of secondary, rather than primary, sex ratios, so that accurate assessments can detect changes
in time for mitigation measures to be effective.
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